COMBO Notation Guide

Notation

This guide is designed to summarize key notation and quantities used the COMBO R Package and associated publications.
Term Definition Description
X Predictor matrix for the true outcome.
Z Predictor matrix for the observed outcome, conditional on the true outcome.
Y Y ∈ {1, 2} True binary outcome. Reference category is 2.
yij 𝕀{Yi = j} Indicator for the true binary outcome.
Y* Y* ∈ {1, 2} Observed binary outcome. Reference category is 2.
yik* 𝕀{Yi* = k} Indicator for the observed binary outcome.
True Outcome Mechanism logit{P(Y = j|X; β)} = βj0 + βjXX Relationship between X and the true outcome, Y.
Observation Mechanism logit{P(Y* = k|Y = j, Z; γ)} = γkj0 + γkjZZ Relationship between Z and the observed outcome, Y*, given the true outcome Y.
πij $P(Y_i = j | X ; \beta) = \frac{\text{exp}\{\beta_{j0} + \beta_{jX} X_i\}}{1 + \text{exp}\{\beta_{j0} + \beta_{jX} X_i\}}$ Response probability for individual i’s true outcome category.
πikj* $P(Y^*_i = k | Y_i = j, Z ; \gamma) = \frac{\text{exp}\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}{1 + \text{exp}\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}$ Response probability for individual i’s observed outcome category, conditional on the true outcome.
πik* $P(Y^*_i = k | Y_i, X, Z ; \gamma) = \sum_{j = 1}^2 \pi^*_{ikj} \pi_{ij}$ Response probability for individual i’s observed outcome cateogry.
πjj* $P(Y^* = j | Y = j, Z ; \gamma) = \sum_{i = 1}^N \pi^*_{ijj}$ Average probability of correct classification for category j.
Sensitivity $P(Y^* = 1 | Y = 1, Z ; \gamma) = \sum_{i = 1}^N \pi^*_{i11}$ True positive rate. Average probability of observing outcome k = 1, given the true outcome j = 1.
Specificity $P(Y^* = 2 | Y = 2, Z ; \gamma) = \sum_{i = 1}^N \pi^*_{i22}$ True negative rate. Average probability of observing outcome k = 2, given the true outcome j = 2.
βX Association parameter of interest in the true outcome mechanism.
γ11Z Association parameter of interest in the observation mechanism, given j = 1.
γ12Z Association parameter of interest in the observation mechanism, given j = 2.